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Abstract. In the digital measurement systems, the sampling frequency is essen-
tial by their influence in the measurement's accuracy. Their effect is decisive
when it is necessary 1o obtain the signal pick values. The methods to improve
the quality of the acquired data are rclated with system operation in real time or
if it is admitted to carry out samples taking and later on the data analysis.

In this paper, the relationship between the sampling frequency and mcasure-
ment's maximum crror is oblained to sinusoidal continuous signals. This rcla-
tionship can be extended for signals where onc or several fundamental har-
monic arc outstanding.

By mcans of an analytic procedure, the mathematical expressions are obtained
and maximum error is determined for he picks values measurement. The data
arc proccssed by means of the Fast Fourier Transform (FFT) and it is also used,
a cubic correction (interpolation of cubic splines).

1 Introduction

At present, the wide use of computerized means in measuring, processing and control
systems requires the analysis of the main factors affecting the quality of the informa-
tion acquired.

The methods used for reducing the effect of a relatively low sampling frequency,
without the need to increase it in the data acquisition system, will depend on whether
the signal samples require processing while being acquired, or if it is permitted to take
some samples, and then process them.

This paper intends to be useful from the academic as well as from the investigating
point of view. Its practical value is based on the following reasons:

1. It enables you to calculate, by means of mathematical expressions, the maximum
error in computerized measurements of a signal harmonics due to the sampling fre-
quency which influences in the total maximum error of measurements. Such error is
also influenced by the sensor's accuracy, which you cannot act upon, and the quantifi-
cation error of the analogical/digital converter. The latter may be reduced to negligible
values with 12- and 16-bit A/D converters.

2. It is possible to choose a sampling frequency that does not represent a heavy burden
for the data acquisition system, that is, just the one that is strictly necessary, since it
can be programmed on an operative system that is not necessarily a real-time one like
Windows or LINUX. This often occurs on using personal computers, which is a ten-
dency for computerized measuring systems in laboratories [5]). This implies an efTi-
cient as well as a rational use of the PC’s central processing unit. At this point, the
main thing is to make little use of the PC's central processing unit; otherwise, it would
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be necessary to use an additional hardware, such as an intelligent data acquisitiopn
board (with its own processor and operative system) or devices for setting up a dis.
tributed system, which makes it more expensive and complex. It is important to prop-
erly plan and program such system, for instance, for every variable to be measured, or
for choosing a correct sampling frequency that is neither low nor extremely high. In
many applications it is useful to “suitably” reduce the sampling frequency in order 1o
acquire, save, and transmit the information and then interpolate in the receiver, The
latter would mean that an equivalent and higher sampling frequency has been used (7).

Shannon’s sampling theorem [1], (9] establishes the minimum angular sampling
frequency (W,) to reconstruct a continuous X(t) signal based on the samples taken in
T time periods, denoting X*(t) as the X(t) digitalized signal.
Considering that:

W, =2r/T

Where:

W,: sampling frequency in radians per second.

T: sampling period in seconds.
For a sinusoidal signal:

X(t) = Asin(wt)

being w the angular frequency of the X(t) signal. If W, is greater than or equal as 2w,
then the X(t) continuous signal in time can be reconstructed on the basis of the sam-

ples taken by a digital device, just as a data acquisition system using an analogi-
cal/digital converter and a PC, as shown in Fig. 1.
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Fig.1. Diagram for measuring waves
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Fora non-sinusoidal signal. made up of many harmonics, as in the case of an irregular
wave signal, the sampling frequency would have to be higher than or the same as
twice the highest interest frequency in the spectrum of the signal being measured
through its samples, acquired in T periods of time. Being able to reconstruct the con-
tinuous signal through its samples does not guarantee the accuracy of this reconstruc-
tion. Practical criteria related with the types of applications have been used. For in-
stance, for control systems [1] the sampling frequency should be based on the knowl-
edge of its influence on its own operation. Thus it is reasonable to consider that the
highest interest frequency must be closely related to the bandwidth of the closed-loop
control system. Therefore, the choice of such sampling frequency must be based on
the bandwidth or the rising time of the closed-loop control system. It is adequate to
take it betweenl0 and 30 times greater than the bandwidth or choose the sampling
period between 4 and 10 times smaller than the rising time, all of which can be small
in relation with the criteria to be followed in the typical applications of signal process-
ing [8], {10]. A relatively low sampling frequency in control systems is caused by the
fact that its dynamics has low-pass filter characteristics and its typical-time constants
are much greater than the closed-loop response time.

Taking into account the primary processing operations set up to improve the accu-
racy and the destination of the information obtained, there are other practical criteria,
such as considering the peak frequency (F,) of the signal spectrum and taking the
sampling frequency (F;) in accordance with the following relationship:

F, 2 8F, this criterion is recommended for measuring and irregular-wave generation
systems in research labs [2], or for taking the sampling period between one tenth or
one twentieth of the significant-wave period [4].

Here, F, has been used to denote the sampling frequency in Hertz (Hz), equivalent to
cycles per second or samples per second.

All cases have been based on practical criteria guaranteeing a suitable accuracy
depending on the applications, but no mathematical relationships liable to accurately
establish the maximum error that might be produced due to the sampling frequency
has been stated. This is important when it is necessary to calculate the error of a meas-
uring system which is influenced by all the elements involved, from the continuous-
variable sensor up to the analogical/digital converter and the frequency with which the
samples are being taken, as shown in Fig.1.

2 Relationship between Sampling Frequency and Error

In digital measuring systems, apart from the quantification error due to the analogi-
cal/digital conversion, an error occurs due to the sampling frequency. This error can
become extremely serious and should be considered when obtaining the maximum
¢rror presented in the measuring.

lflcxt, it is presented an analysis in which a sinusoidal signal is used as an entry, just
as It might happen for the generation of regular (sinusoidal) waves. or when it can be
Considered that there is a fundamental harmonic in the spectrum of the irregular
Waves. The maximum error of the readings in relation to the sampling frequency when
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using a zero order hold is determined. This is equivalent to the fact that a sample of
the signal keeps its validity right up to the time when the next sample is taken. This
maximum error is given by the following expression [1]:

Enmseate = Max |x(k + 1) - x(K)| (1)

Being:
Emauabs: absolute maximum error of readings.
x(k), x(k+1) : values of the signal in t =kT and t = (k+1)T, respectively.

T: sampling period (time in-between the taking of the samples of the continuous sig-
nal).

k: integer value ( 1,2,3,.....).

From expression (1) it can be interpreted that value X(k) will be the representative
value of the signal until the next sample is taken X(k+l). That is why the
Max[x(k+l)-x(k)| can be considered as the absolute maximum error in real time

(for which there only is information at the moment of the current sampling and at
previous moments) and it is caused by the sampling frequency of the signal when
using a zero order hold.

The maximum error is located symmetrically to the origin of the axis of the coordi-

nates where the highest speed of signal change takes place, as shown in Fig. 2, being
E nawsbs the absolute maximum error.
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Fig. 2. Absolute maximum crror in real time (causal processing) for a sinusoidal signal
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Empabs is the a!;solutc maximum error produced around the peak values in real time
or causal processing. From Fig. 2 it can be stated that:

X(k+ 1)= Asin(2pf T/2) )
X(k)= Asin[2pf(- T/2)] (3)
Hence:
Eemuste - |Asin(2pf T/2)- Asin[2pf(- T/2)]
Emeats = |2Asin(2pf T/2)|
Emeste = 2A [sin(p {T)| (4
Being: T= I/Fs

F, : sampling frequency. On taking F, = nf, where f is the signal frequency and n an
integer greater or equal to two, it is obtained that:

Emauts = 2Asin(p/n) (5)
The maximum relative error, regarding the peak-to-peak value of the signal, ex-
pressed in % will be:

_ 2Asin(n 'n)
=4 X100 (6)
Emers = sin(nt/n) x100 (7

Next, an analysis is presented for formulating the expressions of the maximum error
produced around the peak values in causal processing (Empabs)-

The following equation is obtained:
X(k +1) = Asin(2rf 1/4f) = Asin(x/2) = A (8)

X(k)= Asin Rpf(1/4f- ] (9)

X(k)= Asin &pf&——-aj
X (k)= Asin&.(I- 4T
() Smk( ){;'
The sampling period can be written as:
T=L (10)

nf
It is replaced in the previous expression, thus obtaining:

X (k)= Asun[z(l-df;‘?” (i
X (k)= Asin[%—gﬁ] = Acos(gnﬁ) (12)
n

Finally:
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E = A Acoswpg
mpabs > Enﬁ (13)

and the relative maximum error, regarding the peak-to-peak value of the signal, ex.
pressed in % will be:

o]
A- A cosge?pg

= 100
Emers A X (14)

2n
Emprel =0.5[l--<:os(n )]xlOO (15)

In many applications, as in waves analysis, for instance, it is not necessary to make
most calculations in real time. Instead, they are to be made on the basis of data previ-
ously acquired and determine the maximum and minimum values of the signal, which
could be considered as sinusoidal or formed by a main harmonic and other secondary
harmonics of small amplitudes. Therefore, in that case, the maximum error that can
occur in determining such values is presented in Figure 3 and is called Emepaps as the
absolute static maximum error on determining peak values. This is an error in non-
causal processing, since there is a register of previously acquired information, and
then, there is information in previous and subsequent sampling moments for a sam-
pling moment considered as current (k).
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Fig. 3. Absolute static maximum error on delermining peak values (non-causal processing)
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This error occurs when none of the values of the sz “ples taken coincides with the
value of the Flgﬂnl pcak. This error will be the maximum when the arrangement of
the samples is the one presented in Figure 3; both samples being equidistant from the

peak value.

Eammte = |X(k +0.5) - X(k) (16)
Where:
X (k +0.5)= Asin(2xf1/40) (17)
X (k+0.5)= Asin(x/2) = A (18)
X (k)= Asin 2af1/4f -T/2)] (19)
A 2T . & b i I
X (k)= Asin gz.-:rr—“ a’.ﬁ‘ Asin Eo'zn)i Replacing 1 - e ;T,thm, the
expression is:
- Asin B8 1%
X (k)= Asin e, (20)
X&) Alini?z—-%g- Acosﬁg (21)
finally, the expression is obtained as:
Beacae = A - AcosE] 22
e = A Acosm ( )

and the relative maximum error, regarding the pcak-to-pcak value of the signal,
expressed in % will be:

A-Azc:sﬁgxwo (23)

(24)

E-qul-
o
Eapri=0.59 - —1
wonl é colﬁqxloo

.By evaluating expressions (7), (15), and (24), for sampling frequencies, being n
times the frequency of the sinusoidal signal, the results are presented in Table 1.
Table 1. Comparison of relative errors according to the sampling frequency

n Enurrd E-F"’l Ewpnl

(%) %) | %)

2 100 100 50
4 70.7! 50 14.64

38.26 i 14.64 38

10 309 9.54 2.44

20 15.64 2.44 0.61
50 6.27 039 0.098
00 il 0.098 0.024
200 1.57 0.024 0.0061
300 1.04 0.0109 0.0027
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3 Reducing Error Due to a Low Sampling Frequency.

Several methods can be applied in order to recover the continuous signal from the
samples, thus improving the accuracy of their reconstruction without needing to raise
its sampling frequency considerably. There are various methods, such as:

1. For non-causal processing, in the series of sampled values, the method can inter-
polate points that are compatible with the complex vector of such series for which
the FFT method [13] is used. For instance, when the peak values of the waves are
calculated in maritime hydraulics analysis [12].

2. Interpolation with cubic splines [3], [5], [13], for non-causal processing as well,

One order hold or higher, for causal processing, which is frequent in real time

applications (1].

=

3.1 Effect of Interpolation using the FFT Method.

The analysis of the effect of the interpolation of points in the temporary series is car-
ried out. These points are compatible with their complex vector in the domain of the
frequency. With this method, points are added to a waves register, thus obtaining an
effect close to the one that would occur provided it had been sampled at a higher fre-
quency. The number of points to be added can be chosen, calling it filling factor (Fg)
and defining it as follows:

. NPFS

NPOS
Where:
NPFS: number of points of the filled series; NPOS: number of points of the origi-
nal series. Fr: It must be base power 2 in order to apply Fourier transform algorithm.
Fig. 4 shows part of the water level graph against time for the wave signal. It
shows the original series sampled at 3 Hz and the series filled with factor F,= 8.

. [ ] . c. . . . : i
-2 -f r". . A I o v
.’ l '.\, .'o .

= .

0.1 Time (5) s:t

® Points of the original * Points of the interpolated series
Fig. 4. Example of interpolation with FFT
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The original series has been reconstructed with the application of this method, thus
counteracting the distortion caused by a low sampling frequency to a great extent. It
can be noticed that adding points between the sampled values has made up the signal
peaks. Such points RCCP the compatibility with the complex vector of the original
series (in this case, 7 points are added between every two samples).

The waves statistical values are calculated with the interpolated series and the
mean and variance of the relative errors are found in respect to the signal sampled at
48 Hz. The summary is shown in Table 2.

It was given the name of interpolated series 1 to those in which 2, 4, 8 and 16 fill-
ing factors (F) were used for signals sampled with 24, 12, 6 and 3 Hz respectively.
For the four signals, the total number of points of the interpolated signals amounted to
4096, which means that the original series sampled at 24 Hz had 2048 points and that
the interpolation has only added an intermediate point (between two samples). With
this, the series cannot be remade properly. For this signal, the interpolation did not
cause a reduction of errors. Errors decrease 4.4, 2.3 and 1.4 times for signals sampled
at 12, 6 and 3 Hz, respectively.

Table 2. Summary of the mean and variance of relative errors in %

24 Hz 12 Hz 6 Hz 3 Hz
Original :
Sacice 0.48+0.08 1.6411.52 2612363 31£902
(F,=2) (F,=4) (F,=8) (F, = 16)
Interpolated 0.4810.08 037%0.13 1.16+052 228249
Series | There is not It improve 4.4 imes | It impraove 2.3 umes | It improve 1.4 umes
improvement
(Fr=4) (F,=8) (F,=16) (F, =32)
Interpolated 0.04 £ 0.002 0.03 +0.001 0971076 192+3.09
series 2 It improve 11 times | It improve 55 umes | It improve 2.8 imes | It improve 1.6 times

It was given the name of interpolated series 2 to those using 4, 8, 16 and 32 (Fy)
factors for the signals sampled at 24, 12, 6 and 3 Hz, respectively. The total number of
points of the interpolated series amounted to 8192. For 24 Hz, the interpolation added
three intermediate points. 7, 15 and 31 intermediate points were added at 12, 6 and 3
Hz, respectively. In the first two cases (sampling at 24 and 12 Hz, respectively) the
improvements are significant, with a decrease of errors between 11 and 55 times and
more modest results for the last two signals, with very low sampling frequencies of 6
and 3 Hz, respectively.

It can be noticed that once the series sampled at 24 Hz and 12 Hz are interpo-
lated, the mean and the variance of relative errors are similar in both cases, and that,
for this example, the interpolation makes it unnecessary to sample the continuous
signal at 24 Hz, since it is enough to do it at 12 Hz and interpolate with a Ff = 8 filling
factor,. Slightly smaller mean-and-variance values for 12 Hz can be observed. It is
Considered that such behavior is determined by fortuitous factors that mainly depend
On the way in which the sampled points are arranged with respect to the continuous
Signal in time, which, as it is irregular, makes such arrangement un predictable. In
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tests made elsewhere and not shown in this paper, when adding the same number of
intermediate points in both series, the results obtained keep their characteristics,

In all the tests made, the number of waves registered (35 waves) has been kept
constant so that only the sampling frequency exerts its influence on the errors of statis.
tical calculations.

3.2 Interpolation with cubic splines (spline interpolation)

For making this interpolation, the mathematics functions of the LabVIEW are
used [5). They are also available in the MATLAB.

According to the notation in the LabVIEW, the following diagram is used:

; _J_._.‘ Spline -interpolation value
Interple——
Interpolant —IT_ ervor
x S— |

Spline Interpolation.vi

Where:

Y: arrangement of values to be interpolated.

X: arrangement of the values of axis x; in this case it will be time, which will in-
crease during the sampling period in which the data of arrangement Y were ac-
quired.

x; (small case) value of axis x for which an interpolated point is desired. This
value will increase in the new sampling period resulting from interpolation, will be
smaller than the original sampling period and will be within the range of values of
arrangement X,

Interpolant: second derivative of the cubic spline interpolation function which
is calculated by means of another virtual instrument (VI), called spline interpo-
lant.vi.

error: It returns a value that indicates whether the execution of the function has
been successful or not.

The output value of interpolation z (interpolation value) in interval [x;, x; + 1]is
given by:
z = Ay, + By, +l+Cy: +Dy; +1;
Where:
X,. -X

A=—*
X

1 2 1 2
v~ B=1-A; c=g(A'-A)(x,,,-x,) ; D=E(B’ -B)(x.., -x,)
The interpolant value can be obtained with another function (virtual instrument:
Spline Interpolant.vi), having registers Z, Y as inputs.
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Y ———{Splre
e Interpolant
X ——|pant f—— error

Spline Interpolant.vi

Interpolation function g(x) passes through all points: (x;.y;).
Yi= g(x;) ; where i =0,1......n-1.
The spline Interpolant.vi virtual instrument obtains the interpolation function g(x)

by interpolating at every [X, X;.,] interval with a Pi(x) cubic polynomic function hav-
ing the following conditions:

L p,(x))=Y;

2. p; (Xiu1) =Yin

3. g(x) has the first and second derivative in interval [X, X,.,] continuous. Thus:
a) p;(x;)=pi.(x;)
b) p;(x;)=pin(x;)

Fori=0, I,...,n-2.

The following equations are derived from the last condition:

Xi=Xiq = Xial = Xjy -
' . ‘g (xi) + '"l'3' He(x,) +
Xiot "Xi g (x,y) = TRl Yi ViV

6 Xisd =Xi  Xi-Xjy
Where i = 1, 2,...,n-2 and n-2 equations are obtained with unknown n g"(x. ), fori
= 0, 1,..,n-1. This virtual instrument (spline Interpolant.vi) calculates g"(xo),

g'(x,,,,) using the following formula:

' iel = Ji 3A2'] -

g(x) = Mol + (X=X (x;) +
Xiel =X, 6

382 -1 .

'6 (Xia =X )8 (Xi4))
Where:
. X-X.

Xiat = %, Xi+1 "%

This VI uses g (Xg).g (Xn.q)t0 solve all the g (x;), for i = 1,..., n-2;

g°(xi) is the Interpolant output, which is used as an input in VI spline interpola-

flon.vi, Fig. 5 and 6 show two sections of a series interpolated with cubic splines. It
also shows the original series and the series interpolated by means of the FFT (com-
Plex interpolation) with the goal of facilitating the comparison. Table 3 shows the
Correlation coefTicients. The second column (24Hz and 24Hz_FFT) is the correlation
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coefTicient between the signal sampled at 24 Hz and the interpolated one by using
Fourier Fast Transform (FFT) in order to obtain a 24 Hz-equivalent sampling fre.
quency, similarly for Columns 3 and 4. In both interpolations, the original series had
been sampled at 3 Hz. Due to that, 7 points were inserted between every two samples
10 obtain a 24 Hz-equivalent sampling frequency. In the figures presented, you can see
that the complex interpolation (FFT) achieves a relatively better reconstruction for this
type of wave signal, which has harmonics with small amplitudes and higher frequen-

] f\
S ’
A

L (cm)
"

] T‘w’f\«.j RN

|
0.0 Time 73

Points of the original senies. @ Points of the interpolated series with spline interpolation.
7~~~ Points of the interpolated series with FFT,

Fig. 5. Interpolation with cubic splines (a section of the serics)
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8 Points of the original series  ®  Points of the interpolated senes with spline interpolation.
-~ Points of the interpolated serics with FFT.

Fig. 6. Interpolation with cubic splines (a second section of the series)

Table 3. Correlation coeflicients

24Hz and 24Hz and 24Hz_FFT and
24Hz_FFT 24Hz_Spline 24Hz_Spline
CoefT. of correlation 0.9621 0.6899 0.8011

4 Conclusions

Expressions (7), (15) and (24) are obtained. They make it possible to calculate the
relative maximum error due to the sampling frequency (F;) for a continuous and sinu-
soidal signal. This can be applied to signals where one or more fundamental harmon-
ics are relevant; for instance, for a regular-wave signal or for the fundamental har-
monic of the irregular waves. This error can be considered an indicator of accuracy
due to the F, when it has to do with the complete reconstruction of the continuous
signal in time X(t) from the samples taken, using a ladder-type reconstruction or a
zero order hold. E,.,,wa is the accuracy in causal processing (ordinary in real time
applications) and can be interpreted as the maximum delay in perceiving the real value
Of the signal. Likewise, Empra Would be the maximum delay, but in values close to the
signal peaks. However, Enepret FEpresents the relative maximum error that can occur, in
hon-causal processing, when you want to calculate the peak values of the signal.

For waves-generation channels with similar characteristics to the one studied, the
highest interest frequency in its spectrum is lower than 2 Hz. Therefore, a minimum Fi
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between 18 and 20 Hz (samples per second) can be taken, which is equivalent to about
10 samples for each cycle (or wavelength) of the highest-frequency harmonic. Interpo-
lation with cubic splines, widely mentioned and well accepted by many authors apg
available in signal-processing commercial sofiware, reconstructs the series in the same
way as when the Fourier Fast Transform is used. However, with the latter you can
achieve a more accurate reconstruction for signals of irregular waves or similar char-
acteristics. This is compared graphically and using the correlation coefficients.

The number of waves registered has been kept constant so that only the F, exerts
its influence on the errors from statistical calculations. The greater the number of
waves (many authors recommend about 120), the higher the probability of reducing
error in statistical calculations, since the latter are based on the use of the largest
waves. which can be detected with a greater degree of probability when a high number
of samples is taken.

The results obtained are useful in that they make it possible to assess the contri-
bution of the F, to the total error of the measuring system (from the transductor to the
PC) and to compare two methods widely used in non-causal processing and that can
easily be used with any commercial software. Their limitations are related to the use

of a sinusoidal signal for making the analysis.
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